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ABSTRACT 
This paper presents two new document ranking models for Web 
search based upon the methods of semantic representation and the 
statistical translation-based approach to information retrieval (IR). 
Assuming that a query is parallel to the titles of the documents 
clicked on for that query, large amounts of query-title pairs are 

constructed from clickthrough data; two latent semantic models 
are learned from this data. One is a bilingual topic model within 
the language modeling framework. It ranks documents for a query 
by the likelihood of the query being a semantics-based translation 
of the documents. The semantic representation is language inde-
pendent and learned from query-title pairs, with the assumption 
that a query and its paired titles share the same distribution over 
semantic topics. The other is a discriminative projection model 

within the vector space modeling framework. Unlike Latent Se-
mantic Analysis and its variants, the projection matrix in our 
model, which is used to map from term vectors into sematic space, 
is learned discriminatively such that the distance between a query 
and its paired title, both represented as vectors in the projected 
semantic space, is smaller than that between the query and the 
titles of other documents which have no clicks for that query. 
These models are evaluated on the Web search task using a real 

world data set. Results show that they significantly outperform 
their corresponding baseline models, which are state-of-the-art. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval;  I.2.6 [Artificial Intelligence]: Learning 

General Terms 

Algorithms, Experimentation 

Keywords 

Clickthrough Data, Latent Semantic Analysis, Topic Model, Line-
ar Projection, Translation Model, Web Search 

1. INTRODUCTION 

Most modern search engines retrieve Web documents by literally 
matching terms in documents with those in a search query. How-
ever, lexical matching methods can be inaccurate due to the lan-
guage discrepancy between Web documents and search queries 
[20, 31] i.e., a concept is often expressed using different vocabu-

laries and language styles in documents and queries.  
In the last two decades, different latent semantic models have 

been proposed to address the issue [e.g., 9, 19, 4]. Different terms 
that occur in a similar context are grouped into the same semantic 
cluster. Thus, a query and a document, represented as vectors in 
the lower-dimensional semantic space, can still have a high simi-
larity even if they do not share any term.  

An alternative strategy to cope with the problem is the ap-

proach based on statistical translation [2]: A query term can be a 
translation of any word in a document which may be different 
from, but semantically related to the query term; and the relevance 
of a document given a query is assumed proportional to the trans-
lation probability from the document to the query.  

The research goal of this paper is to develop new ranking 
models for Web search by combining, in a principled way, the 
methods of semantic representation and statistical translation. Our 

assumption is that the translation between a query and a document 
can be modeled more effectively by mapping them into some 
semantic representations that are language independent than by 
mapping them at the word level. 

Our work is based on two lines of previous research. The first 
is a set of clickthrough-based translation models for Web search 
presented and evaluated in [14], which is a significant extension 
of the original approach [2], motivated by the increasingly large 
amount of clickthrough data. Following [14], in this study we 

consider documents and queries as two different “languages” (i.e., 
the query language and the document language), and construct 
parallel training data from clickthrough data by pairing a query 
with the titles of the documents that have clicks for that query1. 

                                                             

1 In modern search engines, a Web document is described by mul-

tiple fields [14, 31], including title, body, anchor text etc. In our 
experiments, we only used the title field of a Web document for 
ranking. In addition to providing simplicity for fast experimen-
tation, our decision is motivated by two factors, as described 

and empirically justified in [14]. First, titles are more similar to 
queries both in length and in vocabulary, making the translation 
model learning more effective. Second, the title field gives a 
good single-field retrieval result, although it is much shorter 
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Different from [14], our models are trained to capture the map-
ping relationships between terms in a document and terms in a 
query at the sematic level rather than at the word level. 

The second line of previous work that lays the foundation of 
this study is the research on cross-lingual and multi-lingual latent 

semantic models [11, 25, 27]. In these earlier works, various ex-
tensions of Latent Semantic Analysis (LSA) or topic models are 
developed for applications such as cross-lingual IR [11] and re-
trieval of parallel Web pages [27]. In this study we investigate a 
variety of bilingual latent semantic models, which are the exten-
sions and variants of these previous models. In particular, we 
focus the research on three aspects: (1) the methods of learning 
semantic representations from clickthrough data, (2) the ap-

proaches to incorporating the latent semantic models into proper 
IR frameworks, and (3) the evaluation of their effectiveness for 
Web search on a real world data set.  

In this paper we present two new document ranking models 
for Web search, a bilingual topic model and a discriminative pro-
jection model. Both models are learned on clickthrough data. The 
topic model represents a document as a distribution of semantic 
topics, and is incorporated into the language modeling framework 

for IR by assuming that a query term is generated from a mixture 
of these topics. The bilingual topic model learns a semantic repre-
sentation in such a way that each query and its paired titles, ex-
tracted from clickthrough data, share as much as possible the 
same topic fractions. Unlike the topic model, the projection model, 
similar to LSA, represents a document as a point in the semantic 
space. It fits naturally the IR framework based on vector space 
model (VSM). The relevance of a query and a document is com-

puted as the (cosine) similarity between their vectors in the se-
mantic space. Different from LSA and its variants, our model 
learns a projection matrix, which maps the term-vector of a doc-
ument onto a lower-dimensional semantic space, using a super-
vised learning method. Inspired by the learning-to-rank frame-
work [6], the projection matrix is learned discriminatively in such 
a way that the distance between a query and its paired title, both 
represented as vectors in a projected semantic space, is smaller 
than that between the query and the titles of other documents 

which have no clicks for that query. We evaluated the two new 
ranking models on the Web search task using a real world data 
set. Results show that they significantly outperform their corre-
sponding baseline models, which are considered state-of-the-art. 

In the rest of the paper, Section 2 reviews related work. Sec-
tions 3 and 4 describe in detail the bilingual topic model and the 
discriminative projection model, respectively. Section 5 presents 
the experiments. Section 6 concludes the paper. 

2. PREVIOUS WORK 

This section reviews previous approaches to bridging the lexical 
gap between queries and documents for IR. 

2.1 Statistical Translation Models 

The statistical translation based approach is an extension of the 
language modeling approach to IR [2, 28]. Each document is 
scored by the likelihood of it translating into a query. Let   

                                                                                                     

than other fields such as anchor and body; thus it can serve as a 
reasonable baseline in our experiments. Nevertheless, our meth-
ods are not limited to the title field, and can be easily applied to 
the multi-field description.  

    | |  be a query and       | |  be a document. A word 

translation model [2] assumes that both   and   are bags of words, 

and that the translation probability of   given   is computed as 

 ( | )  ∏ ∑  ( | ) ( | )

      

 (1) 

where  ( | )  is the unigram probability of word   in  , and  

 ( | ) is the probability of translating   into a query term  .   

It is easy to verify that if we only allow a word to be translated 
into itself, Eq. (1) is reduced to the simple exact term matching 
that is used by traditional unigram language modeling approaches. 
To bridge the lexical gap between queries and documents, the 
translation based approach allows a document to translate any one 
of its words   to a different but semantically related query term 

with a nonzero probability. 

Unlike latent semantic models, which will be reviewed shortly, 
the translation-based approach does not map different terms into 
latent semantic clusters but learns translation relationships directly 
between a term in a document and a term in a query.  A major 
challenge of this approach is how to estimate the translation prob-
abilities. The ideal training data would be a large amount of que-
ry-document pairs, in each of which the document is judged as 
relevant to the query.  Due to the lack of such training data, [2] 
resorts to some synthetic query-document pairs, and [22] simply 

uses the title-document pairs as substitutes for training data. Since 
recently, with the growing availability of search logs, it is possible 
to mine implicit relevance judgments from clickthrough data, and 
to generate a large amount of real query-document pairs for trans-
lation model training [14]. Given enough training data, more so-
phisticated translation models such as phrase models and factored 
models have also been investigated [14, 23, 26]. 

2.2 Generative Topic Models 

One of the first topic models widely used for IR is Probabilistic 
Latent Semantic Analysis (PLSA) [19]. Although Hofmann ap-
plied PLSA to IR in the VSM framework in the original paper, 
PLSA is in nature a generative model, and can be more straight-
forwardly incorporated into the language modeling framework, 

under which documents are ranked by their probabilities of gener-
ating a query. In PLSA, a query, viewed as a short document, is 
generated from a document using the following process. First, a 
multinomial distribution   of T topics for each document is se-

lected as the most likely topic distribution for the document. Se-
cond, a latent topic z is picked for each query term with probabil-
ity  ( |   )    . Finally, a query term   is generated with 

probability  ( |  ), where    is the topic specific word distribu-

tion. Assuming that both a document and a query are bag-of-
words, the probability of generating the query   from the docu-

ment   is 

 ( | )  ∏∑ ( |  )  

    

  (2) 

Notice that both Eq. (1) and (2) are in the form of a factored gen-
erative model where a query term is generated from a mixture of 
factors. While in translation models the factors are simply words 
in a document, in PLSA the factors are hidden topics.  

Latent Dirichlet Allocation (LDA) [4] generalizes PLSA to a 
proper generative model and places Dirichlet priors over the pa-
rameters   and  . As a result, in LDA, instead of a single most 

likely topic vector   for a document, a posterior distribution over 

vectors    is used, where the prior is a conjugate Dirichlet prior 



which is the same for all documents. So, in theory LDA over-
comes some problems of PLSA such as overfitting and the issues 
regarding generating queries from unseen documents [4, 32]. 
However, whether the theoretical superiority of LDA can be trans-
lated into significant empirical improvement over PLSA on realis-

tic applications, such as Web search, remains to be demonstrated. 
The effectiveness of LDA for IR is demonstrated in [32] without 
directly comparing it to PLSA. [17] clarifies the relationship be-
tween LDA and PLSA in the context of IR, and concludes that 
PLSA is a maximum a posteriori (MAP) estimated LDA model. 
[1] shows that MAP inference performs comparably to the best 
Bayesian inference methods for LDA. Therefore, in our experi-
ments all the topic models are implemented as PLSA, or equiva-

lently, LDA with MAP inference. 
Recently, these topic models have been extended to handle 

cross-lingual or multi-lingual cases, where there are pairs or tuples 
of corresponding documents in different languages. For example, 
the Poly-Lingual Topic Model (PLTM) [25] is an extension to 
LDA that views documents in a tuple as having a shared topic 
distribution  . Each of the documents in the tuple uses   to select 

topics z, but could use a different language-specific, word-topic-

distribution   
  to generate words for the topics. Two additional 

models, Joint PLSA (JPLSA) and Coupled PLSA (CPLSA) are 
introduced in [27]. JPLSA is a variant of PLTM when documents 
of different languages share the same word-topic distribution, and 
MAP inference, instead of Gibbs sampling, is performed. CPLSA 

extends JPLSA by constraining corresponding documents to have 
similar fractions of words assigned to each topic according to the 
posterior distribution of topic assignments, instead of sharing the 
prior topic distributions. The bilingual topic models discussed in 
Section 3 are the variants and extensions to these previous models 
when we strive to effectively learn model parameters on click-
through data for the application of Web search. 

2.3 Linear Projection Models 

One of the most well-known linear projection models for IR is 
LSA [9]. LSA models the whole document collection using a 
    document-term matrix C, where n is the number of docu-

ments and d is the number of word types, and performs singular 
value decomposition (SVD) on C. The k biggest singular values 
are then used to find the     projection matrix. Thus, a docu-

ment represented by a d-dimensional term vector can be mapped 
to a k-dimensional concept vector. 

Similar to topic models, LSA can also be extended to handle 
pairs or tuples of parallel or comparable documents. For example, 
Cross-Language LSA (CL-LSA) [11] applies LSA to concatenat-
ed comparable documents from different languages. Oriented 
Principal Component Analysis (OPCA) [12, 27] solves a general-
ized Eigen problem by introducing a noise covariance matrix to 
ensure that comparable documents can be projected closely. Ca-
nonical Correlation Analysis (CCA) [30] finds projections that 

maximize the cross-covariance between the projected vectors. In 
all these methods, the linear projection is learned without explicit-
ly taking into account how documents are ranked. We will show 
that learning the projection matrix discriminatively on query-title 
pairs, using a cost function closely related to the measure of eval-
uating document ranking, leads to a much more effective model 
for Web search. 

3. BILINGUAL TOPIC MODEL 

The bilingual topic model (BLTM) can be viewed as a special 
case of PLTM [25], where search queries and web documents are 
assumed to be written in two different languages and MAP infer-

ence is used instead of Bayesian inference. BLTM is also a close 
variant of JPLSA [27].  

We assume that a query       | |  and its paired title 

      | |  share a common distribution of topics, but use 

different (probably overlapping) vocabularies to express these 
topics. The graphical model is shown in Figure 1. Formally, 
BLTM assumes the following process of generating a query-title 
pair. 

 First, for each topic  , a pair of different word distributions 

(  
 
   

 )  are selected from a Dirichlet prior with concentra-

tion parameter β, where   
 

 is a topic-specific query-word 

distribution, and   
  a topic-specific title-word distribution. 

Assuming there are   topics, we have two sets of distribu-

tions     (  
 
     

 
) and    (  

      
 ). 

 Then, for each query and its paired title, a topic distribution 

     is drawn from a Dirichlet prior with concentration pa-

rameter  . 

 Each term in the query is then generated by first selecting a 

topic   according to     , and drawing a word from   
 
.  

 Similarly, each term in the paired title is generated by select-

ing a topic   according to the same topic distribution     , 

and then drawing a word from   
 . 

Thus, the log-likelihood of a corpus of query-title pairs, to-
gether with the paired document-topic vectors and word-topic 
vectors, is 

   ( (  |  ) (  |  )∏ ( | ) ((   )|          )
(   )

 ) (3) 

where 

 ((   )|          )  ∏∑ ( |   
 
) ( |    )

    

  

 ∏∑ ( |   
 ) ( |    )

    

  

Note that since we use MAP estimation, as will be described in 

Section 3.1,          and    in Eq. (3) are treated as parameters 

rather than hidden variables, as in the Bayesian inference methods. 

3.1 MAP Estimation 

We use the standard EM algorithm [10] to estimate the parameters 

(          ) of BLTM by maximizing the joint log-likelihood of 

the parallel corpus and the parameters, as shown in Eq. (3). The 
derivation of the updates is similar to that described in [7, 8]. In 
the E-step, the posterior probabilities for each term   in query   

 
 
 
 
 

 
 
 
Figure 1: Graphical model for BLTM. 
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and each term   in its paired title   are computed for the latent 

variables   according to: 

 ( |      )  
 ( |  

 
) ( |    )

∑  ( | 
  

 
) (  |    )  

 (4) 

 ( |      )  
 ( |  

 ) ( |    )

∑  ( |   
 ) (  |    )  

 (5) 

In the M-step, parameters are updated for given posterior proba-

bilities computed in the previous E-step.  We treat  ,    and    

as hyperparameters, each corresponding to one Dirichlet prior, 
and denote   as the size of the query vocabulary and   the size 

of title vocabulary. To simplify notation, letting  (   ) be the 

frequency of term   in query  , and  (   ) the frequency of term 

  in title  , we define     
      (   ) ( |      )  and 

    
     (   ) ( |      ). Then, the updates can be written 

as 

 ( |  
 
)  

     ∑     
   

(   )

      ∑      
   

(   )   

 (6) 

 ( |  
 )  

     ∑     
   

(   )

      ∑      
   

(   )   

 (7) 

 ( |    )  
    (∑     

   
  ∑     

   
 )

     ∑ (∑      
   

  ∑      
   

 )  

 (8) 

3.2 Posterior Regularization (PR) 

A query and a title, if they are paired, are expected to not only 
share the same prior distribution over topics but also contain simi-
lar fractions of words assigned each topic. Since MAP estimation 

of the shared topic vector is concerned with explaining the union 
of tokens in the query and document and can be easily dominated 
by the longer one of the two, it does not guarantee that each topic 
  occurs with similar frequency in the query and title. Thus, fol-

lowing [27], we extend BTLM by constraining the paired query 
and title to have similar fractions of tokens assigned to each topic, 
and the constraint is enforced on expectation using posterior regu-
larization [13].  

BTLM with posterior regularization (BTLM-PR) is a variant 
of CPLSA [27] with two important modifications. First, while 

BTLM-PR assumes a pair of query and title to share the same 
topic distribution   as shown in Figure 1, in CPLSA the topic 

distributions of a pair of documents in two languages are com-
pletely independent. Second, CPLSA uses inequality constraints 
with slack variables to form the constrained space whereas 
BTLM-PR uses only equality constraints.  These modifications 
not only lead to a mathematically simpler model, thus making the 
model training faster (e.g., it requires fewer EM iterations), but 
also significantly improve the retrieval results. 

BTLM-PR can be trained using a modified EM algorithm, 

where in the E-step the posterior distributions of topics computed 
on a query-title pair (   ) are projected onto a constrained set of 

distributions, for which the expected fraction of tokens in   that 

are assigned topic   is the same as the expected fraction of tokens 

in   that are assigned the same topic. The expected counts with 

respect to this projected posterior distribution are then used in the 
M-step, which remains the same as Eq. (6) to (8). 

In what follows, we describe in detail how the projection is 
performed. Let (   ) be a pair of sequences of tokens and their 
topic assignments, where  

  *(      | |) (      | |)+  

  {(      | |) (      | |)}   

The projection minimizes the Kullback-Leibler divergence be-
tween two sets of distributions   and   ,   (  || ). Let    de-

note the set of posterior distributions over hidden topic assign-
ments for the tokens in   and  , computed by the standard E-step 

as in Eq. (4) and (5). There are | | plus | | distributions in this 
set. 

  * ( |      )  ( |      )+.  

   is an ideal set of distributions that has the desired property: the 

expected fraction of each topic is equal in   and    

   *   ( | )    ( | )+,  

such that for each topic  

   
 *

 

| |
∑ (    )

| |

   

+     
 *

 

| |
∑ (    )

| |

   

+  

 

where 

   
 *

 

| |
∑ (    )

| |

   

+  
 

| |
∑  (   | )

   

     

 

   
 *

 

| |
∑ (    )

| |

   

+  
 

| |
∑   (   | )

   

  

 

Now, the projection can be formulated as a constrained optimiza-
tion problem, where we seek an ideal set of distributions    that is 

closest to  : 

   
    

  (  || )  (9) 

where   is a space of distribution sets    satisfying the con-

straint: 

   
 *

 

| |
∑ (    )

| |

   

+     
 *

 

| |
∑ (    )

| |

   

+         

In our case, the valid ideal distribution space   is non-empty. The 

problem of Eq. (9) can be solved efficiently in its dual form. For 
the sake of clarity, we leave the derivation to Appendix A, and 

only present the result below. The primal solution    is given in 

terms of the dual solution    by  

  (   | )  
 

    
 (   |      )    ( 

  

| |
) (10) 

where      ∑  (   |      )    ( 
  

| |
)  , and  

  (   | )  
 

    
 (   |      )    (

  

| |
) (11) 

where      ∑  (   |      )    (
  

| |
)   . 

The optimal value of    can be obtained using the gradient ascent 
algorithm with the update 

   
      

       (  ) (12) 



where   is the learning rate, and the gradient   is computed as 

 (  )     
 *

 

| |
∑ (    )

| |

   

+     
 *

 

| |
∑ (    )

| |

   

+ (13) 

In summary, the projection step is performed for each pair 
(   ) in training data as follows. First, parameters          

are optimized using gradient ascent according to Eq. (12) and 
(13). Then, the projected probabilities are computed according to 

Eq. (10) and (11). The modified EM algorithm uses the projected 
posterior probabilities    to update the model parameters in the M-

step. 

3.3 Ranking Documents 

In our Web search experiments, we mixed BLTM with the 
smoothed unigram language model, and used the following doc-

ument ranking function: 

  ( | )  ∏  ( | )

   

 (14) 

  ( | )     ( | )  (    )   ( | ) (15) 

   ( | )     ( | )  (    )     ( | ) (16) 

     ( | )  ∑ ( |  
 
) ( |  )

 

 (17) 

Here,  ( | )  in Eq. (15) and  ( | )  in Eq. (16) are the un-

smoothed background model and document model, respectively. 
   and    are tuning parameters with their values between 0 and 

1. Notice that letting      reduces the model to a unigram lan-

guage model with Jelinek-Mercer smoothing [34], which is used 
as baseline in our experiments. Letting     , the document 

model depends solely on BLTM. Also notice that BLTM in Eq. 
(17) differs from a topic model of Eq. (2). Although in both mod-
els the topics are generated from   written in title language, the 

query term   is generated from topic-specific word distributions 

in query language in BLTM. Thus, BLTM can be considered as 
performing a translation from title to query via hidden topics. In 
our experiments, we used folding-in with 20 EM iterations to map 

a document in test data to its corresponding topic vector   . 

4. DISCRIMINATIVE PROJECTION 

MODEL 

The discriminative projection model (DPM) maps a sparse, high-
dimensional term vector onto a dense, low-dimensional space 
through a simple matrix multiplication. DPM differs from other 
linear projection models in the way the projection matrix is 
learned.  In this study we compare DPM to LSA and its variants. 
Since in our implementation DPM and various LSA models take 

the same clickthrough data as input and output the projection ma-
trix in the same model form, we start the description of DPM with 
a brief review of LSA and its variants. 

4.1 LSA and its Variants 

LSA models the whole document collection using a     docu-

ment-term matrix  , where n is the number of documents and d is 

the number of word types.   is first factored into the product of 

three matrices using SVD 

       (18) 

where the orthogonal matrices   and   are called term and docu-

ment vectors, respectively, and the diagonal elements of   are 

singular values in descending order. Then, a low-rank matrix ap-
proximation of   is generated by retaining only the k biggest sin-

gular values in  . Now, a document (or a query) represented by a 

term vector   can be mapped to a low-dimensional concept vector 

 ̂ as 

 ̂      (19) 

where the     matrix       
   is called the projection matrix. 

In document search, the relevance score between a query and a 
document, represented respectively by term vectors   and  , is 

assumed to be proportional to their cosine similarity score of the 

corresponding concept vectors  ̂ and  ̂, according to the projec-
tion matrix   

    (   )  
 ̂ ̂

‖ ̂‖‖ ̂‖
 (20) 

Notice that LSA is closely related to principal component 

analysis (PCA), and can be solved via Eigen-decomposition in-

stead. Let   be the correlation matrix between terms      . 

The projection matrix   is exactly the top-  Eigen vectors of  . 

Compared to LSA, the only difference is that PCA solves the 
Eigen problem on the covariance matrix instead. Because the term 

vectors are very sparse in practice and the column means are close 
to zero,   is in fact very close to the covariance matrix. In our 

experiments we used PCA to derive the LSA projection matrix. 
The objective of LSA is to find the matrix to maximize the 

variance of the projected vectors. When applied directly to the 
clickthrough data, queries and title are treated as separate docu-
ments and the click information is not used. CL-LSA [11] and 
OPCA [12, 27] are two variants to LSA, striving to reduce the 
projected distance between a query and its paired title. Unfortu-
nately, although both variants use the pair information to bias the 

derivation of the projection matrix, their objective functions are in 
fact only a coarse approximation to the final ranking measure. We 
hypothesize that with a large set of training data, the projection 
matrix can be learned discriminatively by minimizing a loss func-
tion that targets the ranking scenario, and thus yields better results. 
We describe this new projection learning framework in the next 
section. 

4.2 Projection Learning via Siamese Neural 

Network (S2Net) 

The projection matrix in DPM is learned from query-title pairs 

using S2Net, a newly proposed learning framework that learns 
discriminatively the projection matrix from pairs of related and 
unrelated documents. We briefly introduce the model below and 
interested readers can refer to [33] for more detail. 

S2Net treats the raw term vector as the input layer and the 
mapped concept vector as the output layer. The value of each 
node in the output layer is a linear sum of all the input nodes, 
where the weights are associated with the edges. In other words, 

the network structure is a complete bipartite graph between the 
input and output layers, and the edge weights are equivalent to the 
form of a linear projection matrix  , as in Eq. (19). Below, we 

describe the loss function and training process. 
The design of the loss function in S2Net follows the pairwise 

learning-to-rank paradigm outlined in [6]. Consider a query   and 

two documents    and   , where    has clicks for   but    does 

not. Let      and    be the term vectors of      and   , respec-



tively. We then construct two pairs of term vectors (    ) and 

(    ), where the former is preferred and should be ranked high-

er. Given the model (i.e., the projection matrix)  , let   be the 

difference of the cosine similarity scores of their projected con-
cept vectors, following Eq. (20). Namely,        (    )  
    (    ). Intuitively, we want to learn a model to increase  . 

We use the following logistic loss over  , which can be shown to 

upper bound the pairwise accuracy 

 (   )     (     (   )) (21) 

The loss function in Eq. (21) has a shape similar to the hinge loss 
used in SVMs. Because of the use of the cosine similarity function, 
we add a scaling factor   that magnifies   from [-2, 2] to a larger 

range. Empirically, the value of   makes no difference as long as 

it is large enough. In the experiments, we set     . Because the 

loss function is differentiable, optimizing the model parameters   

can be done using the gradient-based methods, such as L-BFGS. 
For the sake of a clean presentation, we leave the gradient deriva-
tion to Appendix B. 

Given that the optimization problem is not convex, initializing 
the model from a good projection matrix often helps reduce the 

training time and may converge to a better local minimum. In our 
experiments, we always started the model parameters from the 
LSA matrix. In principle, Eq. (21) can further be regularized by 

adding a term 
 

 
‖    ‖

 , which forces the learned model not to 

deviate too much from the initial model   . However, we did not 

find clear empirical advantage over the simpler early stop ap-
proach in a preliminary study, which is adopted in the experi-
ments in this paper. 

5. EXPERIMENTS 

This section evaluates the effectiveness of the models described in 

Sections 3 and 4 on the Web search application. Instead of pre-
senting a direct comparison between topic modeling and linear 
projection modeling2, we focus our experiments on demonstrating 
that for each type of models, clickthrough data can lead to signifi-
cant improvements when modeled properly. Thus, we will report 
the results of the topic models and the linear projection models in 
separate sections. For each type, we compare our models to their 
baseline methods, which are considered state-of-the-art in the 
research community. 

5.1 Data Sets and Evaluation Methodology 

We evaluated the retrieval models on a large-scale real world data 
set, called the evaluation data set henceforth. The data set contains 

                                                             

2 Strictly speaking, the results of topic models and linear projec-
tion models, reported in Tables 1 and 2 respectively, cannot be 
compared directly due to three reasons. First, the baseline mod-
els, with which the proposed models are combined to achieve 
the best results, are different. Second, in order to perform S2Net 
training efficiently for fast experimentation, the vocabulary used 
in building linear projection models is much smaller than that 

for topic models. Third, the input term weighting functions for 
them are different: the topic models use the raw term frequency 
counts, while the projection models take TFIDF vectors. We 
leave to future work a direct comparison of topic modeling and 
linear projection modeling in a more consistent setting, and how 
to best combine them for Web document ranking. 

16,510 English queries sampled from one-year query log files of 
the Microsoft Bing search engine. On average, each query is asso-
ciated with 15 Web documents (URLs). Each query-title pair has 
a relevance label.  The label is human generated and is on a 5-
level relevance scale, 0 to 4, with 4 meaning document   is the 

most relevant to query   and 0 meaning   is not relevant to  . All 

the queries and documents are preprocessed as follows. The text is 

white-space tokenized and lowercased, numbers are retained, and 
no stemming/inflection is performed. 

All the ranking models used in this study (i.e., language mod-
els, topic models, VSM and linear projection models) contain free 
parameters that must be estimated empirically by trial and error.  
Therefore, we used 2-fold cross validation: A set of results on one 
half of the data is obtained using the parameter settings optimized 
on the other half, and the global retrieval results are combined 

from those of the two sets. 
The performance of all the ranking models was measured by 

mean Normalized Discounted Cumulative Gain (NDCG) [21].  
We report NDCG scores at truncation levels 1, 3, and 10.  We also 
performed a significance test using the paired t-test. Differences 
are considered statistically significant when the p-value is less 
than 0.05. 

In our experiments, the query-title pairs, used for model train-
ing, are extracted from one year query log files using a procedure 

similar to [16].  First of all, a set of query sessions were extracted 
from the raw log files. A query session consists of a user-issued 
query and a ranked list of documents, each of which may or may 
not be clicked by a user.  Second, we built for each document a 
so-called query click field, which consists of a set of query-score 
pairs (       (   )), where   is a unique query string for which 

the document   has clicks and      (   ) is a score assigned to 

 , as defined in Eq. (1) in [16]. Only those pairs whose scores are 

larger than a threshold were retained.      (   ) could be the 

number of times the document was clicked on for that query, but 
it is important to also consider the number of times the page has 
been shown to the user and the position in the ranked list at which 
the page was shown. Finally, we formed a set of query-title pairs 

by aligning the title of the document to each unique query string 
in the query click field of the same document. 

Some previous studies [e.g., 16, 29] show that the query click 
field, when it is valid, is the most effective for Web search. How-
ever, click information is unavailable for many URLs, especially 
new URLs and tail URLs, leaving their click fields invalid (i.e., 
the field is either empty or unreliable because of sparseness).  In 
this study, we assume that each document contained in the evalua-

tion data set is either a new URL or a tail URL, thus has no click 
information (i.e., its click field is invalid). Our research goal is to 
investigate how to learn the latent semantic models from the 
popular URLs that have rich click information, and apply the 
models to improve the retrieval of those tail or new URLs. To this 
end, in our experiments only the title fields of the Web documents 
are used for ranking. 

From one-year query log files, we were able to generate large 
amounts of query-title pairs using the procedure described above. 

For training latent semantic models in this study, we used a ran-
domly sampled subset of 82,834,648 pairs whose documents are 
popular and have rich click information. We then tested the 
trained models in ranking the documents in the evaluation data set, 
which do not have click information. The query-title pairs were 
pre-processed in the same way as the evaluation data to ensure 
uniformity. 



5.2 Topic Model Results 

Table 1 shows the main Web document ranking results using var-

ious topic models, tested on the human-labeled evaluation data set 
via 2-fold cross validation, as described in Section 5.1.  

UM (Row 1) is the baseline model, a unigram language model 
with Jelinek-Mercer smoothing, parameterized by Eq. (14) to (16) 
with     .  

Rows 2 to 9 are four different topic models, parameterized by 
Eq. (14) to (17). To improve the efficiency of model training, we 
pruned the query-title training data by retaining only top 500K 
high-frequency words. We used 100 topics (     ) for all the 

topic models. In order to investigate the relative contributions of 

the unigram model and the latent semantic model to ranking, we 
report for each topic model the results using two different settings. 
One is letting the document model solely depend on the latent 
semantic model by setting      in Eq. (16). These results are 

shown in the shaded rows in Table 1. The other is defining the 
document model as a mixture of the unigram model and the latent 
semantic model by using a nonzero    in Eq. (16), tuned via 

cross-validation. We used folding-in with 20 EM iterations to map 
each document in the evaluation data set to its corresponding topic 
vector. In what follows, we describe the four topic models in turn. 

PLSA (Rows 2 and 3) is our implementation of the model 

proposed in [19], and was trained on documents only (i.e., the title 
side of the query-title pairs). Different from [19], our version of 
PLSA was learned using MAP estimation, with       and 

      . The model can also be viewed as an approximation to 

the LDA document model described in [32], which is learned on 
the TREC document collection via Gibbs sampling. 

BLTM (Rows 4 and 5) is the model described in Figure 1, 
where the model parameters were learned on query-title pairs 
using MAP estimation, as described in 3.1. We found that the 
model performance is not very sensitive to the values of the hy-
perparameters, which were set in our experiments as       and 

          . We also found after around 20 EM iterations, 

the likelihood of the model barely increases. 
BLTM-PR (Rows 6 and 7) is BLTM trained using the modi-

fied EM algorithm that uses posterior regularization (PR), de-
scribed in Section 3.2, to constrain the paired query and title not 
only to share the same prior topic distribution  , but to also have 

similar fractions of tokens assigned to each topic. We found that 

with PR, the EM algorithm takes fewer iterations to converge. In 
our experiments, the likelihood seems to saturate after 16 itera-
tions. 

BLTM-PR-1V (Rows 8 and 9) is a variant of BLTM-PR 
where we merge the vocabularies in query and title languages and 
learn topic-specific word distributions over these merged vocabu-
laries. This is suggested in [27], arguing that such a variant not 
only simplifies the implementation but also sometimes leads to 

better results. In our experiments, we found that using the merged 
vocabularies does not bring any significant difference for BLTM, 
but does lead to some small but significant improvement for 
BLTM-PR. One possible interpretation is that the same word in a 
query and document very often has the same topic, which is not 
used at all by the two-vocabulary version. In particular, for some 
rare words that may be harmful since there might not be enough 
data to estimate their topic distributions in queries and titles com-

pletely independently. Therefore, we speculate that a hierarchical 
Bayesian model that encourages matching words in queries and 
titles to have the same topics, but also allows them to diverge, 

would be superior to both the single vocabulary and two-
vocabulary models. We leave it to future work. 

WTM_M1 (Rows 10 and 11) is our implementation of the 
word translation model described in [14], listed here for compari-
son. The corresponding ranking function is similar to Eq. (14) to 
(16). The only difference is that       in Eq. (16) is replaced by 

the word translation model      defined as 

    ( | )  ∑  ( | ) ( | )

   

   

where  ( | )  is the word translation probability assigned by 

IBM-Model-1 [5], trained on query-title pairs using EM. 
The results in Table 1 suggest several conclusions. First, using 

PLSA alone as a document model hurts the ranking performance 
(Row 2 vs. Row 1). But a linear combination of PLSA and the 
original document model significantly outperforms the baseline 
model (Row 3 vs. Row 1). The results are consistent with those 
previously reported on the TREC collections [32]. Second, using 
clickthrough data for model training by extending PLSA to 
BLTM, leads to a significant improvement (Rows 4 and 5 vs. 
Rows 2 and 3). Third, the performance of BLTM can be further 

improved by introducing constraints in the EM training to force 
the paired query and title to share the same proportion of topics 
(Rows 6 to 9 vs. Rows 4 and 5). The differences among BLTM, 
BLTM-PR, and BLTM-PR-V1 are statistically significant. Finally, 
we confirmed the effectiveness of the word translation model. The 

# Models NDCG@1 NDCG@3 NDCG@10 

1 UM 0.308 0.373 0.454 

2 PLSA (    ) 0.295 0.371 0.456 

3 PLSA 0.325 0.391 0.470 

4 BLTM (    ) 0.330 0.399 0.476 

5 BLTM 0.338 0.404 0.479 

6 BLTM-PR (    ) 0.334 0.403 0.479 

7 BLTM-PR 0.342 0.406 0.482 

8 BLTM-PR-1V (    ) 0.337 0.403 0.480 

9 BLTM-PR-1V 0.344 0.407 0.483 

10 WTM_M1 (    ) 0.332 0.400 0.478 

11 WTM_M1 0.338 0.404 0.480 

Table 1: Web document ranking results using different topic 
models, tested on the evaluation data set, where only the title field 
of each document is used.    
 

 

Figure 2: Average number of function evaluations and gradient 

computations per EM iteration, as a function of the number of the 
EM iterations, in the projection step for training BLTM-PR. 
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model performs as well as BLTM, i.e., their results are not signif-
icantly different (Rows 10 and 11 vs. Rows 4 and 5). However, 
both BLTM-PR and BLTM-PR-V1 beat the translation model 
with a statistically significant margin (Rows 6 to 9 vs. Rows 10 
and 11). We also tried combining WTM_M1 with BLTM-PR, but 

the result is not significantly better than that of BLTM-PR. 
The complexity of the training algorithm for BLTM is the 

same as the EM training for PLSA, which has been well-studied. 
BLTM-PR uses a modified EM algorithm. Although BLTM-PR 
needs fewer EM iterations to converge, each iteration is more 
expensive due to the projection step. The runtime of the projection 
step is dominated by function evaluations (Eq. (28)), and other-
wise the most expensive step is the computation of the gradients 

(Eq. (13)). Notice that the projection function needs to be called 
for each query-title pair. Initializing BLTM-PR with a uniform 
distribution for   and  , Figure 2 plots the average number of 

function evaluations and gradient computations per EM iteration, 
as a function of the number of the EM iterations. Both curves 
show that after 10 EM iterations, the training becomes much 
slower due to the dramatically increased cost of the projection 
step, indicating that from this moment EM starts to lead the distri-
bution set far away from the ideal one in terms of KL distance. 

The cost of projection reduces slightly after 16 iterations when the 
EM training saturates. In our experiments, we found that training 
BLTM takes around 30 hours on a commodity 8-core server with 
64-GB memory, and training BLTM-PR takes twice as much time. 
In practice, since the EM algorithm can be easily parallelized, 
topic model training could be performed much more efficiently on 
a cluster of computers. 

5.3 Linear Projection Model Results 

Table 2 shows the main Web document ranking results using var-
ious linear projection models, tested on the human-labeled evalua-
tion data set.  

VSM (Row 1) is the baseline model, where both documents 
and queries are represented as term vectors, with the TF-IDF term 
weighting, and the documents are ranked by the cosine similarity 

between the query and document vectors. 
Rows 2 to 9 are four different linear projection models. All of 

them have the same model form as that of LSA [9]. To improve 
the efficiency of model training, we truncated the term vectors 
based on a vocabulary consisting of only the top 40K high docu-
ment-frequency (DF) words, where the DF values are calculated 
based on the clickthrough data. We used 100 dimensions (k=100) 
for the vectors in semantic space. Similar to topic models, we 

report a pair of results for each projection model using two differ-
ent settings. One is ranking documents using the cosine similarity 
scores in the semantic space, as in Eq. (20). These results are 
shown in the shaded rows in Table 2. The other is ranking docu-
ments based a weighted linear combination of two cosine similari-
ty scores, computed in the original term space and in the projected 
semantic space, respectively. The linear combination weight is 
tuned via cross-validation. In what follows, we describe each of 

these models in turn. 
LSA (Rows 2 and 3) is our implementation of the model de-

scribed in [9]. As described in Section 4.1, we used PCA instead 
of SVD to compute the matrix. Queries and titles are treated as 
separate documents; the pair information from the clickthrough 
data was not used in this model. 

CL-LSA (Rows 4 and 5) extends LSA by leveraging the pair 
information so that the projected distance between a query and its 
paired title is reduced [11]. In our implementation, each query and 

its paired title were concatenated first to form a new document. 
Then, the projection matrix was learned by applying LSA to this 
new corpus. 

OPCA (Rows 6 and 7) leverages the pair information in a 
more principled way [12, 27] than CL-LSA does. Noticing that 
solving the Eigen-decomposition problem in PCA is the same as 

finding the vectors   that maximize the Rayleigh quotient: 

    

   
 (22) 

OPCA improves PCA by replacing Eq. (22) with the generalized 
Rayleigh quotient: 

    

    
 (23) 

where   is the noise covariance matrix. The role of   is to ensure 

that the variance of the projected vectors of the query and title 

from the same pair can be minimized. Let    and    be the doc-

ument-term matrices of queries and titles, respectively. In addition, 

column vectors in    and    correspond respectively to the query 

and title in the pair when they have the same column index. The 
noise covariance matrix is constructed as 

  
 

 
(     )

 
(     ) (24) 

where   is the number of query-title pairs. 
S2Net (Rows 8 and 9) is the learning framework introduced in 

Section 4.2, where the projection matrix is discriminatively 
learned using relevant and irrelevant pairs of queries and titles. 
We first randomly split the clickthrough corpus into two subsets, 
training (99.5%) and validation (0.5%). For each query, the paired 
title is treated relevant (positive) and we randomly selected 4 oth-
er titles from the data as the irrelevant ones (negative). The pair-
wise training setting encourages the model to lead to higher simi-
larity scores of positive pairs compared to negative ones of the 

same query. We stop the training process based on the model 
performance on the validation set. 

Several interesting conclusions can be drawn from the results 
shown in Table 2. First, when comparing different linear projec-
tion models with the VSM baseline (Rows 2, 4, 6 and 9 vs. Row 
1), we found that all models except S2Net perform worse than 
VSM. This is consistent with the observation made by other re-
searchers, which is that using LSA alone can hurt the ranking 

performance, especially for a very low dimensional concept vec-
tor space [24]. This result also justifies the scheme of combining 
the projection models with VSM. As presented in Table 2, the 
NDCG scores of the combined models are all better than both 

# Models NDCG@1 NDCG@3 NDCG@10 

1 VSM 0.313 0.379 0.460 

2 LSA 0.298 0.372 0.455 

3 LSA + VSM 0.330 0.396 0.474 

4 CL-LSA 0.298 0.370 0.454 

5 CL-LSA + VSM 0.330 0.396 0.474 

6 OPCA 0.306 0.373 0.454 

7 OPCA + VSM 0.328 0.395 0.473 

8 S2Net  0.329 0.401 0.479 

9 S2Net + VSM 0.340 0.407 0.483 

Table 2: Web document ranking results using different linear 
projection models, tested on the evaluation data set, where only 
the title field of each document is used.    
 



VSM and the corresponding projection models.  Second, unlike 
the case of topic models, simply extending LSA to its bilingual 
version CL-LSA does not lead to any significant improvement 
(Rows 4 and 5 vs. Rows 2 and 3). Third, by simultaneously mini-
mizing the distance between projected vectors of queries and their 

paired titles, OPCA does outperform LSA and CL-LSA with a 
small but statistically significant margin (Row 6 vs. Rows 2 and 
4). However, after combining with the term vector model, the 
differences among these methods are not significant (Row 7 vs. 
Rows 3 and 5). Finally, the S2Net-trained DPM, when either used 
alone or combined with the term vector model, outperforms sig-
nificantly other competing models (Rows 8 and 9 vs. Rows 1 to 7). 
Its superior results demonstrate that with an objective tightly re-

lated to the measure of evaluating document ranking, the discrim-
inative learning approach can be very effective. 

S2Net clearly outperforms other linear projection methods, but 
its training process is, unfortunately, more computationally ex-
pensive. Unlike LSA, CL-LSA and OPCA, which can all be 
solved by Eigen-decomposition, there is no analytic solution that 
minimizes the loss function in S2Net. In our current implementa-
tion, using a cluster of 60 ~ 80 nodes, each training iteration takes 

1 to 1.5 hours and the model converges in approximately 40 itera-
tions. The training time scales roughly linearly in terms of the 
number of dimensions and the number of examples. In contrast, 
using a commodity 8-core server with 64-GB memory, it typically 
takes 8 hours or less to derive an LSA, CL-LSA or OPCA model. 

6. CONCLUSION 

This paper presents two new document ranking models by com-
bining the methods of latent semantic representation and the sta-
tistical translation-based approach to IR. We explore various 
methods of learning the semantic representation that is shared by a 
query and its paired titles from clickthrough data. Our evaluation 
on Web search shows that the proposed clickthrough-based latent 
semantic models significantly outperform both the standard IR 
models that do not use clickthrough data and those previous click-

through-based translation models that do not use semantic repre-
sentation. 

In future work, we intend to explore alternative strategies of 
combining latent semantic models and translation models for IR. 
For example, we can form query-title corpora, where both the 
queries and titles are labeled by topics or concepts (e.g., generated 
using LSA). Then we can align the corpora using word-alignment 
models and readily compute translation probabilities based on 

words and topics. Another research area is the modeling of the 
correlations between topics in document ranking, as suggested in 
[3]. This is motivated by the observation that a search user may 
click a document on a topic that is related to, but not the same as, 
the topic in her query. 

7. REFERENCE 

[1] Asuncion, A., Welling, M, Smyth, P., and Teh, Y W. 2009. On 

smoothing and inference for topic models. In Proceedings of 

Uncertainty in Artificial Intelligence, pp. 27-34. 

[2] Berger, A., and Lafferty, J. 1999. Information retrieval as statis-

tical translation. In SIGIR, pp. 222-229. 

[3] Blei, D., and Lafferty, J. 2007. A correlated topic model of sci-

ence. The Annals of Applied Statistics, Vol. 1, No. 1, 17-35. 

[4] Blei, D. M., Ng, A. Y., and Jordan, M. J. 2003. Latent Dirichlet 

allocation. Journal of Machine Learning Research, 3: 993-1022. 

[5] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, 

R. L. 1993. The mathematics of statistical machine translation: 

parameter estimation. Computational Linguistics, 19(2): 263-311. 

[6] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., 

Hamilton, and Hullender, G. 2005. Learning to rank using gradi-

ent descent. In ICML, pp. 89-96.  

[7] Chien, J-T., and Wu, M-S. 2008. Adaptive Bayesian latent se-

mantic analysis. IEEE Trans on Audio, Speech, and Language 

Processing, 16(1): 198-207. 

[8] de Freitas, N., and Barnard, K. 2001. Bayesian latent semantic 

analysis of multimedia databases. Tech Report TR-2001-15, 

University of British Columbia. 

[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T., and 

Harshman, R. 1990. Indexing by latent semantic analysis. Jour-

nal of the American Society for Information Science, 41(6): 391-

407 

[10] Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the 

Royal Statistical Society, 39: 1-38. 

[11] Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer, T. 

K. 1997. Automatic cross-linguistic information retrieval using 

latent semantic indexing. In AAAI-97 Spring Symposium Series: 

Cross-Language Text and Speech Retrieval. 

[12] Diamantaras, K. I., and Kung, S. Y. 1996. Principle Component 

Neural Networks: Theory and Applications. Wiley-Interscience. 

[13] Ganchev, K., Graca, J., Gillenwater, J., and Taskar, B. 2010. 

Posterior regularization for structured latent variable models. 

Journal of Machine Learning Research, 11 (2010): 2001-2049. 

[14] Gao, J., He, X., and Nie, J-Y. 2010. Clickthrough-based transla-

tion models for web search: from word models to phrase models. 

In CIKM, pp. 1139-1148. 

[15] Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., Shah, 

S., and Zhou, H. 2009. Model adaptation via model interpolation 

and boosting for web search ranking. In EMNLP, 505-513. 

[16] Gao, J., Yuan, W., Li, X., Deng, K., and Nie, J-Y. 2009. 

Smoothing clickthrough data for web search ranking. In SIGIR.  

[17] Girolami, M., and Kaban, A. 2003. On an equivalence between 

PLSA and LDA. In SIGIR, pp. 433-434. 

[18] Griffiths, T. L., Tenenbaum, J. B., and Steyvers, M. 2007. Top-

ics in semantic representation. Psychological Review, Vol. 114, 

No. 2, 211-244. 

[19] Hofmann, T. 1999. Probabilistic latent semantic indexing. In 

SIGIR, pp. 50-57. 

[20] Huang, J., Gao, J., Miao, J., Li, X., Wang, K., and Behr, F. 2010. 

Exploring web scale language models for search query pro-

cessing. In Proc. WWW 2010, pp. 451-460. 

[21] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods for 

retrieving highly relevant documents. In SIGIR, pp. 41-48 

[22] Jin, R., Hauptmann, A. G., and Zhai, C. 2002. Title language 

model for information retrieval. In SIGIR, pp. 42-48. 

[23] Koehn, P., Och, F., and Marcu, D. 2003. Statistical phrase-based 

translation. In HLT/NAACL, pp. 127-133. 

[24] Manning, C. D., and Schutze, H. 1999. Foundations of 

Statistical Natural Language Processing. The MIT Press. 

[25] Mimno, D., Wallach, H. J., Naradowsky, J., Smith, D. A., and 

McCallum, A. 2009. Polylingual topic models. In EMNLP, pp. 

880-889. 

[26] Och, F. 2002. Statistical machine translation: from single-word 

models to alignment templates. PhD thesis, RWTH Aachen. 

[27] Platt, J., Toutanova, K., and Yih, W. 2010. Translingual 

document representations from discriminative projections. In 

EMNLP, pp. 251-261. 

[28] Ponte, J., and Croft, W. B. 1998. A language model approach to 

information retrieval. In SIGIR, pp. 275-281. 

[29] Svore, K., and Burges, C. 2009. A machine learning approach 

for improved BM25 retrieval. In CIKM. 



[30] Vinokourov, A., Shawe-taylor, J., and Cristianini, N. 2003. In-

ferring a semantic representation of text via cross-language cor-

relation analysis. In NIPS, pp. 1473-1480. 

[31] Wang, K., Li, X., and Gao, J. 2010. Multi-style language model 

for web scale information retrieval. In SIGIR, pp. 467-474. 

[32] Wei, X., and Croft, W. B. 2006. LDA-based document models 

for ad-hoc retrieval. In SIGIR, pp. 178-185. 

[33] Yih, W., Toutanova, K., Platt, J., and Meek, C. 2011. Learning 

discriminative projections for text similarity measures. In 

CoNLL. 

[34] Zhai, C., and Lafferty, J. 2001. A study of smoothing methods 

for language models applied to ad hoc information retrieval. In 

SIGIR, pp. 334-342. 

Appendix A: Derivation of the Projection Step 

in BLTM-PR Training 

We derive the forms of the projected posterior probabilities in Eq. 

(10) and (11), and the gradient of Eq. (13). The derivation follows 
closely the one presented in [13], and uses the standard Lagrangi-
an duality results.  

The corresponding Lagrangian of the constrained optimization 
problem in Eq. (9) is  
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The Lagrangian includes the equality constraints to ensure that we 
are in the desired constrained space and that we have valid distri-
butions. A non-negativity constraint on    can also be added, but 

this is not necessary as it falls out from the other conditions. The 
form of   (   | ) can be obtained by setting the derivative of 

 ( ) with respect to    to zero as 
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We end up with the following form 
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Similarly, we can derive the form of   (   | ) as 
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Notice that Eq. (26) and (27) are identical to Eq. (10) and (11), 
respectively. Now, we show how to estimate   . Plugging Eq. (26) 
and (27) into Eq. (25), we have 
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We then use the gradient ascent algorithm to get the optimal    
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where   is the learning rate, and the gradient   is computed as 
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which is identical to Eq. (13) 

Appendix B: Gradient Derivation in S2Net 

We derive the gradient of the loss function in Eq. (21) as follows. 
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Breaking it into three parts, we have 
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To simply the notation, let       be  ̂  ̂   ‖ ̂‖ and   ‖ ̂‖  
respectively. Eq. (33) becomes 
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