
Clickthrough-Based Latent Semantic Models for
Web Search

Jianfeng Gao
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
jfgao@microsoft.com

Kristina Toutanova
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
kristout@microsoft.com

Wen-tau Yih
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
scottyih@microsoft.com

ABSTRACT
This paper presents two new document ranking models for Web
search based upon the methods of semantic representation and the
statistical translation-based approach to information retrieval (IR).
Assuming that a query is parallel to the titles of the documents
clicked on for that query, large amounts of query-title pairs are

constructed from clickthrough data; two latent semantic models
are learned from this data. One is a bilingual topic model within
the language modeling framework. It ranks documents for a query
by the likelihood of the query being a semantics-based translation
of the documents. The semantic representation is language inde-
pendent and learned from query-title pairs, with the assumption
that a query and its paired titles share the same distribution over
semantic topics. The other is a discriminative projection model

within the vector space modeling framework. Unlike Latent Se-
mantic Analysis and its variants, the projection matrix in our
model, which is used to map from term vectors into sematic space,
is learned discriminatively such that the distance between a query
and its paired title, both represented as vectors in the projected
semantic space, is smaller than that between the query and the
titles of other documents which have no clicks for that query.
These models are evaluated on the Web search task using a real

world data set. Results show that they significantly outperform
their corresponding baseline models, which are state-of-the-art.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation

Keywords

Clickthrough Data, Latent Semantic Analysis, Topic Model, Line-
ar Projection, Translation Model, Web Search

1. INTRODUCTION

Most modern search engines retrieve Web documents by literally
matching terms in documents with those in a search query. How-
ever, lexical matching methods can be inaccurate due to the lan-
guage discrepancy between Web documents and search queries
[20, 31] i.e., a concept is often expressed using different vocabu-

laries and language styles in documents and queries.
In the last two decades, different latent semantic models have

been proposed to address the issue [e.g., 9, 19, 4]. Different terms
that occur in a similar context are grouped into the same semantic
cluster. Thus, a query and a document, represented as vectors in
the lower-dimensional semantic space, can still have a high simi-
larity even if they do not share any term.

An alternative strategy to cope with the problem is the ap-

proach based on statistical translation [2]: A query term can be a
translation of any word in a document which may be different
from, but semantically related to the query term; and the relevance
of a document given a query is assumed proportional to the trans-
lation probability from the document to the query.

The research goal of this paper is to develop new ranking
models for Web search by combining, in a principled way, the
methods of semantic representation and statistical translation. Our

assumption is that the translation between a query and a document
can be modeled more effectively by mapping them into some
semantic representations that are language independent than by
mapping them at the word level.

Our work is based on two lines of previous research. The first
is a set of clickthrough-based translation models for Web search
presented and evaluated in [14], which is a significant extension
of the original approach [2], motivated by the increasingly large
amount of clickthrough data. Following [14], in this study we

consider documents and queries as two different “languages” (i.e.,
the query language and the document language), and construct
parallel training data from clickthrough data by pairing a query
with the titles of the documents that have clicks for that query1.

1 In modern search engines, a Web document is described by mul-

tiple fields [14, 31], including title, body, anchor text etc. In our
experiments, we only used the title field of a Web document for
ranking. In addition to providing simplicity for fast experimen-
tation, our decision is motivated by two factors, as described

and empirically justified in [14]. First, titles are more similar to
queries both in length and in vocabulary, making the translation
model learning more effective. Second, the title field gives a
good single-field retrieval result, although it is much shorter

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGIR'11, July 24-28, 2011, Beijing, P. R. China.

Copyright 2011 ACM 978-1-4503-0757-4/11/07...$10.00.

Different from [14], our models are trained to capture the map-
ping relationships between terms in a document and terms in a
query at the sematic level rather than at the word level.

The second line of previous work that lays the foundation of
this study is the research on cross-lingual and multi-lingual latent

semantic models [11, 25, 27]. In these earlier works, various ex-
tensions of Latent Semantic Analysis (LSA) or topic models are
developed for applications such as cross-lingual IR [11] and re-
trieval of parallel Web pages [27]. In this study we investigate a
variety of bilingual latent semantic models, which are the exten-
sions and variants of these previous models. In particular, we
focus the research on three aspects: (1) the methods of learning
semantic representations from clickthrough data, (2) the ap-

proaches to incorporating the latent semantic models into proper
IR frameworks, and (3) the evaluation of their effectiveness for
Web search on a real world data set.

In this paper we present two new document ranking models
for Web search, a bilingual topic model and a discriminative pro-
jection model. Both models are learned on clickthrough data. The
topic model represents a document as a distribution of semantic
topics, and is incorporated into the language modeling framework

for IR by assuming that a query term is generated from a mixture
of these topics. The bilingual topic model learns a semantic repre-
sentation in such a way that each query and its paired titles, ex-
tracted from clickthrough data, share as much as possible the
same topic fractions. Unlike the topic model, the projection model,
similar to LSA, represents a document as a point in the semantic
space. It fits naturally the IR framework based on vector space
model (VSM). The relevance of a query and a document is com-

puted as the (cosine) similarity between their vectors in the se-
mantic space. Different from LSA and its variants, our model
learns a projection matrix, which maps the term-vector of a doc-
ument onto a lower-dimensional semantic space, using a super-
vised learning method. Inspired by the learning-to-rank frame-
work [6], the projection matrix is learned discriminatively in such
a way that the distance between a query and its paired title, both
represented as vectors in a projected semantic space, is smaller
than that between the query and the titles of other documents

which have no clicks for that query. We evaluated the two new
ranking models on the Web search task using a real world data
set. Results show that they significantly outperform their corre-
sponding baseline models, which are considered state-of-the-art.

In the rest of the paper, Section 2 reviews related work. Sec-
tions 3 and 4 describe in detail the bilingual topic model and the
discriminative projection model, respectively. Section 5 presents
the experiments. Section 6 concludes the paper.

2. PREVIOUS WORK

This section reviews previous approaches to bridging the lexical
gap between queries and documents for IR.

2.1 Statistical Translation Models

The statistical translation based approach is an extension of the
language modeling approach to IR [2, 28]. Each document is
scored by the likelihood of it translating into a query. Let

than other fields such as anchor and body; thus it can serve as a
reasonable baseline in our experiments. Nevertheless, our meth-
ods are not limited to the title field, and can be easily applied to
the multi-field description.

 | | be a query and | | be a document. A word

translation model [2] assumes that both and are bags of words,

and that the translation probability of given is computed as

 (|) ∏ ∑ (|) (|)

 (1)

where (|) is the unigram probability of word in , and

 (|) is the probability of translating into a query term .

It is easy to verify that if we only allow a word to be translated
into itself, Eq. (1) is reduced to the simple exact term matching
that is used by traditional unigram language modeling approaches.
To bridge the lexical gap between queries and documents, the
translation based approach allows a document to translate any one
of its words to a different but semantically related query term

with a nonzero probability.

Unlike latent semantic models, which will be reviewed shortly,
the translation-based approach does not map different terms into
latent semantic clusters but learns translation relationships directly
between a term in a document and a term in a query. A major
challenge of this approach is how to estimate the translation prob-
abilities. The ideal training data would be a large amount of que-
ry-document pairs, in each of which the document is judged as
relevant to the query. Due to the lack of such training data, [2]
resorts to some synthetic query-document pairs, and [22] simply

uses the title-document pairs as substitutes for training data. Since
recently, with the growing availability of search logs, it is possible
to mine implicit relevance judgments from clickthrough data, and
to generate a large amount of real query-document pairs for trans-
lation model training [14]. Given enough training data, more so-
phisticated translation models such as phrase models and factored
models have also been investigated [14, 23, 26].

2.2 Generative Topic Models

One of the first topic models widely used for IR is Probabilistic
Latent Semantic Analysis (PLSA) [19]. Although Hofmann ap-
plied PLSA to IR in the VSM framework in the original paper,
PLSA is in nature a generative model, and can be more straight-
forwardly incorporated into the language modeling framework,

under which documents are ranked by their probabilities of gener-
ating a query. In PLSA, a query, viewed as a short document, is
generated from a document using the following process. First, a
multinomial distribution of T topics for each document is se-

lected as the most likely topic distribution for the document. Se-
cond, a latent topic z is picked for each query term with probabil-
ity (|) . Finally, a query term is generated with

probability (|), where is the topic specific word distribu-

tion. Assuming that both a document and a query are bag-of-
words, the probability of generating the query from the docu-

ment is

 (|) ∏∑ (|)

 (2)

Notice that both Eq. (1) and (2) are in the form of a factored gen-
erative model where a query term is generated from a mixture of
factors. While in translation models the factors are simply words
in a document, in PLSA the factors are hidden topics.

Latent Dirichlet Allocation (LDA) [4] generalizes PLSA to a
proper generative model and places Dirichlet priors over the pa-
rameters and . As a result, in LDA, instead of a single most

likely topic vector for a document, a posterior distribution over

vectors is used, where the prior is a conjugate Dirichlet prior

which is the same for all documents. So, in theory LDA over-
comes some problems of PLSA such as overfitting and the issues
regarding generating queries from unseen documents [4, 32].
However, whether the theoretical superiority of LDA can be trans-
lated into significant empirical improvement over PLSA on realis-

tic applications, such as Web search, remains to be demonstrated.
The effectiveness of LDA for IR is demonstrated in [32] without
directly comparing it to PLSA. [17] clarifies the relationship be-
tween LDA and PLSA in the context of IR, and concludes that
PLSA is a maximum a posteriori (MAP) estimated LDA model.
[1] shows that MAP inference performs comparably to the best
Bayesian inference methods for LDA. Therefore, in our experi-
ments all the topic models are implemented as PLSA, or equiva-

lently, LDA with MAP inference.
Recently, these topic models have been extended to handle

cross-lingual or multi-lingual cases, where there are pairs or tuples
of corresponding documents in different languages. For example,
the Poly-Lingual Topic Model (PLTM) [25] is an extension to
LDA that views documents in a tuple as having a shared topic
distribution . Each of the documents in the tuple uses to select

topics z, but could use a different language-specific, word-topic-

distribution
 to generate words for the topics. Two additional

models, Joint PLSA (JPLSA) and Coupled PLSA (CPLSA) are
introduced in [27]. JPLSA is a variant of PLTM when documents
of different languages share the same word-topic distribution, and
MAP inference, instead of Gibbs sampling, is performed. CPLSA

extends JPLSA by constraining corresponding documents to have
similar fractions of words assigned to each topic according to the
posterior distribution of topic assignments, instead of sharing the
prior topic distributions. The bilingual topic models discussed in
Section 3 are the variants and extensions to these previous models
when we strive to effectively learn model parameters on click-
through data for the application of Web search.

2.3 Linear Projection Models

One of the most well-known linear projection models for IR is
LSA [9]. LSA models the whole document collection using a
 document-term matrix C, where n is the number of docu-

ments and d is the number of word types, and performs singular
value decomposition (SVD) on C. The k biggest singular values
are then used to find the projection matrix. Thus, a docu-

ment represented by a d-dimensional term vector can be mapped
to a k-dimensional concept vector.

Similar to topic models, LSA can also be extended to handle
pairs or tuples of parallel or comparable documents. For example,
Cross-Language LSA (CL-LSA) [11] applies LSA to concatenat-
ed comparable documents from different languages. Oriented
Principal Component Analysis (OPCA) [12, 27] solves a general-
ized Eigen problem by introducing a noise covariance matrix to
ensure that comparable documents can be projected closely. Ca-
nonical Correlation Analysis (CCA) [30] finds projections that

maximize the cross-covariance between the projected vectors. In
all these methods, the linear projection is learned without explicit-
ly taking into account how documents are ranked. We will show
that learning the projection matrix discriminatively on query-title
pairs, using a cost function closely related to the measure of eval-
uating document ranking, leads to a much more effective model
for Web search.

3. BILINGUAL TOPIC MODEL

The bilingual topic model (BLTM) can be viewed as a special
case of PLTM [25], where search queries and web documents are
assumed to be written in two different languages and MAP infer-

ence is used instead of Bayesian inference. BLTM is also a close
variant of JPLSA [27].

We assume that a query | | and its paired title

 | | share a common distribution of topics, but use

different (probably overlapping) vocabularies to express these
topics. The graphical model is shown in Figure 1. Formally,
BLTM assumes the following process of generating a query-title
pair.

 First, for each topic , a pair of different word distributions

(

) are selected from a Dirichlet prior with concentra-

tion parameter β, where

 is a topic-specific query-word

distribution, and
 a topic-specific title-word distribution.

Assuming there are topics, we have two sets of distribu-

tions (

) and (

).

 Then, for each query and its paired title, a topic distribution

 is drawn from a Dirichlet prior with concentration pa-

rameter .

 Each term in the query is then generated by first selecting a

topic according to , and drawing a word from

.

 Similarly, each term in the paired title is generated by select-

ing a topic according to the same topic distribution ,

and then drawing a word from
 .

Thus, the log-likelihood of a corpus of query-title pairs, to-
gether with the paired document-topic vectors and word-topic
vectors, is

 ((|) (|)∏ (|) (()|)
()

) (3)

where

 (()|) ∏∑ (|

) (|)

 ∏∑ (|
) (|)

Note that since we use MAP estimation, as will be described in

Section 3.1, and in Eq. (3) are treated as parameters

rather than hidden variables, as in the Bayesian inference methods.

3.1 MAP Estimation

We use the standard EM algorithm [10] to estimate the parameters

() of BLTM by maximizing the joint log-likelihood of

the parallel corpus and the parameters, as shown in Eq. (3). The
derivation of the updates is similar to that described in [7, 8]. In
the E-step, the posterior probabilities for each term in query

Figure 1: Graphical model for BLTM.

z q βq Φq

θ α

z w βd Φd

|q|

|d|
D

and each term in its paired title are computed for the latent

variables according to:

 (|)
 (|

) (|)

∑ (|

) (|)

 (4)

 (|)
 (|

) (|)

∑ (|
) (|)

 (5)

In the M-step, parameters are updated for given posterior proba-

bilities computed in the previous E-step. We treat , and

as hyperparameters, each corresponding to one Dirichlet prior,
and denote as the size of the query vocabulary and the size

of title vocabulary. To simplify notation, letting () be the

frequency of term in query , and () the frequency of term

 in title , we define
 () (|) and

 () (|). Then, the updates can be written

as

 (|

)

 ∑

()

 ∑

()

 (6)

 (|
)

 ∑

()

 ∑

()

 (7)

 (|)
 (∑

 ∑

)

 ∑ (∑

 ∑

)

 (8)

3.2 Posterior Regularization (PR)

A query and a title, if they are paired, are expected to not only
share the same prior distribution over topics but also contain simi-
lar fractions of words assigned each topic. Since MAP estimation

of the shared topic vector is concerned with explaining the union
of tokens in the query and document and can be easily dominated
by the longer one of the two, it does not guarantee that each topic
 occurs with similar frequency in the query and title. Thus, fol-

lowing [27], we extend BTLM by constraining the paired query
and title to have similar fractions of tokens assigned to each topic,
and the constraint is enforced on expectation using posterior regu-
larization [13].

BTLM with posterior regularization (BTLM-PR) is a variant
of CPLSA [27] with two important modifications. First, while

BTLM-PR assumes a pair of query and title to share the same
topic distribution as shown in Figure 1, in CPLSA the topic

distributions of a pair of documents in two languages are com-
pletely independent. Second, CPLSA uses inequality constraints
with slack variables to form the constrained space whereas
BTLM-PR uses only equality constraints. These modifications
not only lead to a mathematically simpler model, thus making the
model training faster (e.g., it requires fewer EM iterations), but
also significantly improve the retrieval results.

BTLM-PR can be trained using a modified EM algorithm,

where in the E-step the posterior distributions of topics computed
on a query-title pair () are projected onto a constrained set of

distributions, for which the expected fraction of tokens in that

are assigned topic is the same as the expected fraction of tokens

in that are assigned the same topic. The expected counts with

respect to this projected posterior distribution are then used in the
M-step, which remains the same as Eq. (6) to (8).

In what follows, we describe in detail how the projection is
performed. Let () be a pair of sequences of tokens and their
topic assignments, where

 *(| |) (| |)+

 {(| |) (| |)}

The projection minimizes the Kullback-Leibler divergence be-
tween two sets of distributions and , (||). Let de-

note the set of posterior distributions over hidden topic assign-
ments for the tokens in and , computed by the standard E-step

as in Eq. (4) and (5). There are | | plus | | distributions in this
set.

 * (|) (|)+.

 is an ideal set of distributions that has the desired property: the

expected fraction of each topic is equal in and

 * (|) (|)+,

such that for each topic

 *

| |
∑ ()

| |

+
 *

| |
∑ ()

| |

+

where

 *

| |
∑ ()

| |

+

| |
∑ (|)

 *

| |
∑ ()

| |

+

| |
∑ (|)

Now, the projection can be formulated as a constrained optimiza-
tion problem, where we seek an ideal set of distributions that is

closest to :

 (||) (9)

where is a space of distribution sets satisfying the con-

straint:

 *

| |
∑ ()

| |

+
 *

| |
∑ ()

| |

+

In our case, the valid ideal distribution space is non-empty. The

problem of Eq. (9) can be solved efficiently in its dual form. For
the sake of clarity, we leave the derivation to Appendix A, and

only present the result below. The primal solution is given in

terms of the dual solution by

 (|)

 (|) (

| |
) (10)

where ∑ (|) (

| |
) , and

 (|)

 (|) (

| |
) (11)

where ∑ (|) (

| |
) .

The optimal value of can be obtained using the gradient ascent
algorithm with the update

 () (12)

where is the learning rate, and the gradient is computed as

 ()
 *

| |
∑ ()

| |

+
 *

| |
∑ ()

| |

+ (13)

In summary, the projection step is performed for each pair
() in training data as follows. First, parameters

are optimized using gradient ascent according to Eq. (12) and
(13). Then, the projected probabilities are computed according to

Eq. (10) and (11). The modified EM algorithm uses the projected
posterior probabilities to update the model parameters in the M-

step.

3.3 Ranking Documents

In our Web search experiments, we mixed BLTM with the
smoothed unigram language model, and used the following doc-

ument ranking function:

 (|) ∏ (|)

 (14)

 (|) (|) () (|) (15)

 (|) (|) () (|) (16)

 (|) ∑ (|

) (|)

 (17)

Here, (|) in Eq. (15) and (|) in Eq. (16) are the un-

smoothed background model and document model, respectively.
 and are tuning parameters with their values between 0 and

1. Notice that letting reduces the model to a unigram lan-

guage model with Jelinek-Mercer smoothing [34], which is used
as baseline in our experiments. Letting , the document

model depends solely on BLTM. Also notice that BLTM in Eq.
(17) differs from a topic model of Eq. (2). Although in both mod-
els the topics are generated from written in title language, the

query term is generated from topic-specific word distributions

in query language in BLTM. Thus, BLTM can be considered as
performing a translation from title to query via hidden topics. In
our experiments, we used folding-in with 20 EM iterations to map

a document in test data to its corresponding topic vector .

4. DISCRIMINATIVE PROJECTION

MODEL

The discriminative projection model (DPM) maps a sparse, high-
dimensional term vector onto a dense, low-dimensional space
through a simple matrix multiplication. DPM differs from other
linear projection models in the way the projection matrix is
learned. In this study we compare DPM to LSA and its variants.
Since in our implementation DPM and various LSA models take

the same clickthrough data as input and output the projection ma-
trix in the same model form, we start the description of DPM with
a brief review of LSA and its variants.

4.1 LSA and its Variants

LSA models the whole document collection using a docu-

ment-term matrix , where n is the number of documents and d is

the number of word types. is first factored into the product of

three matrices using SVD

 (18)

where the orthogonal matrices and are called term and docu-

ment vectors, respectively, and the diagonal elements of are

singular values in descending order. Then, a low-rank matrix ap-
proximation of is generated by retaining only the k biggest sin-

gular values in . Now, a document (or a query) represented by a

term vector can be mapped to a low-dimensional concept vector

 ̂ as

 ̂ (19)

where the matrix
 is called the projection matrix.

In document search, the relevance score between a query and a
document, represented respectively by term vectors and , is

assumed to be proportional to their cosine similarity score of the

corresponding concept vectors ̂ and ̂, according to the projec-
tion matrix

 ()
 ̂ ̂

‖ ̂‖‖ ̂‖
 (20)

Notice that LSA is closely related to principal component

analysis (PCA), and can be solved via Eigen-decomposition in-

stead. Let be the correlation matrix between terms .

The projection matrix is exactly the top- Eigen vectors of .

Compared to LSA, the only difference is that PCA solves the
Eigen problem on the covariance matrix instead. Because the term

vectors are very sparse in practice and the column means are close
to zero, is in fact very close to the covariance matrix. In our

experiments we used PCA to derive the LSA projection matrix.
The objective of LSA is to find the matrix to maximize the

variance of the projected vectors. When applied directly to the
clickthrough data, queries and title are treated as separate docu-
ments and the click information is not used. CL-LSA [11] and
OPCA [12, 27] are two variants to LSA, striving to reduce the
projected distance between a query and its paired title. Unfortu-
nately, although both variants use the pair information to bias the

derivation of the projection matrix, their objective functions are in
fact only a coarse approximation to the final ranking measure. We
hypothesize that with a large set of training data, the projection
matrix can be learned discriminatively by minimizing a loss func-
tion that targets the ranking scenario, and thus yields better results.
We describe this new projection learning framework in the next
section.

4.2 Projection Learning via Siamese Neural

Network (S2Net)

The projection matrix in DPM is learned from query-title pairs

using S2Net, a newly proposed learning framework that learns
discriminatively the projection matrix from pairs of related and
unrelated documents. We briefly introduce the model below and
interested readers can refer to [33] for more detail.

S2Net treats the raw term vector as the input layer and the
mapped concept vector as the output layer. The value of each
node in the output layer is a linear sum of all the input nodes,
where the weights are associated with the edges. In other words,

the network structure is a complete bipartite graph between the
input and output layers, and the edge weights are equivalent to the
form of a linear projection matrix , as in Eq. (19). Below, we

describe the loss function and training process.
The design of the loss function in S2Net follows the pairwise

learning-to-rank paradigm outlined in [6]. Consider a query and

two documents and , where has clicks for but does

not. Let and be the term vectors of and , respec-

tively. We then construct two pairs of term vectors () and

(), where the former is preferred and should be ranked high-

er. Given the model (i.e., the projection matrix) , let be the

difference of the cosine similarity scores of their projected con-
cept vectors, following Eq. (20). Namely, ()
 (). Intuitively, we want to learn a model to increase .

We use the following logistic loss over , which can be shown to

upper bound the pairwise accuracy

 () (()) (21)

The loss function in Eq. (21) has a shape similar to the hinge loss
used in SVMs. Because of the use of the cosine similarity function,
we add a scaling factor that magnifies from [-2, 2] to a larger

range. Empirically, the value of makes no difference as long as

it is large enough. In the experiments, we set . Because the

loss function is differentiable, optimizing the model parameters

can be done using the gradient-based methods, such as L-BFGS.
For the sake of a clean presentation, we leave the gradient deriva-
tion to Appendix B.

Given that the optimization problem is not convex, initializing
the model from a good projection matrix often helps reduce the

training time and may converge to a better local minimum. In our
experiments, we always started the model parameters from the
LSA matrix. In principle, Eq. (21) can further be regularized by

adding a term

‖ ‖

 , which forces the learned model not to

deviate too much from the initial model . However, we did not

find clear empirical advantage over the simpler early stop ap-
proach in a preliminary study, which is adopted in the experi-
ments in this paper.

5. EXPERIMENTS

This section evaluates the effectiveness of the models described in

Sections 3 and 4 on the Web search application. Instead of pre-
senting a direct comparison between topic modeling and linear
projection modeling2, we focus our experiments on demonstrating
that for each type of models, clickthrough data can lead to signifi-
cant improvements when modeled properly. Thus, we will report
the results of the topic models and the linear projection models in
separate sections. For each type, we compare our models to their
baseline methods, which are considered state-of-the-art in the
research community.

5.1 Data Sets and Evaluation Methodology

We evaluated the retrieval models on a large-scale real world data
set, called the evaluation data set henceforth. The data set contains

2 Strictly speaking, the results of topic models and linear projec-
tion models, reported in Tables 1 and 2 respectively, cannot be
compared directly due to three reasons. First, the baseline mod-
els, with which the proposed models are combined to achieve
the best results, are different. Second, in order to perform S2Net
training efficiently for fast experimentation, the vocabulary used
in building linear projection models is much smaller than that

for topic models. Third, the input term weighting functions for
them are different: the topic models use the raw term frequency
counts, while the projection models take TFIDF vectors. We
leave to future work a direct comparison of topic modeling and
linear projection modeling in a more consistent setting, and how
to best combine them for Web document ranking.

16,510 English queries sampled from one-year query log files of
the Microsoft Bing search engine. On average, each query is asso-
ciated with 15 Web documents (URLs). Each query-title pair has
a relevance label. The label is human generated and is on a 5-
level relevance scale, 0 to 4, with 4 meaning document is the

most relevant to query and 0 meaning is not relevant to . All

the queries and documents are preprocessed as follows. The text is

white-space tokenized and lowercased, numbers are retained, and
no stemming/inflection is performed.

All the ranking models used in this study (i.e., language mod-
els, topic models, VSM and linear projection models) contain free
parameters that must be estimated empirically by trial and error.
Therefore, we used 2-fold cross validation: A set of results on one
half of the data is obtained using the parameter settings optimized
on the other half, and the global retrieval results are combined

from those of the two sets.
The performance of all the ranking models was measured by

mean Normalized Discounted Cumulative Gain (NDCG) [21].
We report NDCG scores at truncation levels 1, 3, and 10. We also
performed a significance test using the paired t-test. Differences
are considered statistically significant when the p-value is less
than 0.05.

In our experiments, the query-title pairs, used for model train-
ing, are extracted from one year query log files using a procedure

similar to [16]. First of all, a set of query sessions were extracted
from the raw log files. A query session consists of a user-issued
query and a ranked list of documents, each of which may or may
not be clicked by a user. Second, we built for each document a
so-called query click field, which consists of a set of query-score
pairs (()), where is a unique query string for which

the document has clicks and () is a score assigned to

 , as defined in Eq. (1) in [16]. Only those pairs whose scores are

larger than a threshold were retained. () could be the

number of times the document was clicked on for that query, but
it is important to also consider the number of times the page has
been shown to the user and the position in the ranked list at which
the page was shown. Finally, we formed a set of query-title pairs

by aligning the title of the document to each unique query string
in the query click field of the same document.

Some previous studies [e.g., 16, 29] show that the query click
field, when it is valid, is the most effective for Web search. How-
ever, click information is unavailable for many URLs, especially
new URLs and tail URLs, leaving their click fields invalid (i.e.,
the field is either empty or unreliable because of sparseness). In
this study, we assume that each document contained in the evalua-

tion data set is either a new URL or a tail URL, thus has no click
information (i.e., its click field is invalid). Our research goal is to
investigate how to learn the latent semantic models from the
popular URLs that have rich click information, and apply the
models to improve the retrieval of those tail or new URLs. To this
end, in our experiments only the title fields of the Web documents
are used for ranking.

From one-year query log files, we were able to generate large
amounts of query-title pairs using the procedure described above.

For training latent semantic models in this study, we used a ran-
domly sampled subset of 82,834,648 pairs whose documents are
popular and have rich click information. We then tested the
trained models in ranking the documents in the evaluation data set,
which do not have click information. The query-title pairs were
pre-processed in the same way as the evaluation data to ensure
uniformity.

5.2 Topic Model Results

Table 1 shows the main Web document ranking results using var-

ious topic models, tested on the human-labeled evaluation data set
via 2-fold cross validation, as described in Section 5.1.

UM (Row 1) is the baseline model, a unigram language model
with Jelinek-Mercer smoothing, parameterized by Eq. (14) to (16)
with .

Rows 2 to 9 are four different topic models, parameterized by
Eq. (14) to (17). To improve the efficiency of model training, we
pruned the query-title training data by retaining only top 500K
high-frequency words. We used 100 topics () for all the

topic models. In order to investigate the relative contributions of

the unigram model and the latent semantic model to ranking, we
report for each topic model the results using two different settings.
One is letting the document model solely depend on the latent
semantic model by setting in Eq. (16). These results are

shown in the shaded rows in Table 1. The other is defining the
document model as a mixture of the unigram model and the latent
semantic model by using a nonzero in Eq. (16), tuned via

cross-validation. We used folding-in with 20 EM iterations to map
each document in the evaluation data set to its corresponding topic
vector. In what follows, we describe the four topic models in turn.

PLSA (Rows 2 and 3) is our implementation of the model

proposed in [19], and was trained on documents only (i.e., the title
side of the query-title pairs). Different from [19], our version of
PLSA was learned using MAP estimation, with and

 . The model can also be viewed as an approximation to

the LDA document model described in [32], which is learned on
the TREC document collection via Gibbs sampling.

BLTM (Rows 4 and 5) is the model described in Figure 1,
where the model parameters were learned on query-title pairs
using MAP estimation, as described in 3.1. We found that the
model performance is not very sensitive to the values of the hy-
perparameters, which were set in our experiments as and

 . We also found after around 20 EM iterations,

the likelihood of the model barely increases.
BLTM-PR (Rows 6 and 7) is BLTM trained using the modi-

fied EM algorithm that uses posterior regularization (PR), de-
scribed in Section 3.2, to constrain the paired query and title not
only to share the same prior topic distribution , but to also have

similar fractions of tokens assigned to each topic. We found that

with PR, the EM algorithm takes fewer iterations to converge. In
our experiments, the likelihood seems to saturate after 16 itera-
tions.

BLTM-PR-1V (Rows 8 and 9) is a variant of BLTM-PR
where we merge the vocabularies in query and title languages and
learn topic-specific word distributions over these merged vocabu-
laries. This is suggested in [27], arguing that such a variant not
only simplifies the implementation but also sometimes leads to

better results. In our experiments, we found that using the merged
vocabularies does not bring any significant difference for BLTM,
but does lead to some small but significant improvement for
BLTM-PR. One possible interpretation is that the same word in a
query and document very often has the same topic, which is not
used at all by the two-vocabulary version. In particular, for some
rare words that may be harmful since there might not be enough
data to estimate their topic distributions in queries and titles com-

pletely independently. Therefore, we speculate that a hierarchical
Bayesian model that encourages matching words in queries and
titles to have the same topics, but also allows them to diverge,

would be superior to both the single vocabulary and two-
vocabulary models. We leave it to future work.

WTM_M1 (Rows 10 and 11) is our implementation of the
word translation model described in [14], listed here for compari-
son. The corresponding ranking function is similar to Eq. (14) to
(16). The only difference is that in Eq. (16) is replaced by

the word translation model defined as

 (|) ∑ (|) (|)

where (|) is the word translation probability assigned by

IBM-Model-1 [5], trained on query-title pairs using EM.
The results in Table 1 suggest several conclusions. First, using

PLSA alone as a document model hurts the ranking performance
(Row 2 vs. Row 1). But a linear combination of PLSA and the
original document model significantly outperforms the baseline
model (Row 3 vs. Row 1). The results are consistent with those
previously reported on the TREC collections [32]. Second, using
clickthrough data for model training by extending PLSA to
BLTM, leads to a significant improvement (Rows 4 and 5 vs.
Rows 2 and 3). Third, the performance of BLTM can be further

improved by introducing constraints in the EM training to force
the paired query and title to share the same proportion of topics
(Rows 6 to 9 vs. Rows 4 and 5). The differences among BLTM,
BLTM-PR, and BLTM-PR-V1 are statistically significant. Finally,
we confirmed the effectiveness of the word translation model. The

Models NDCG@1 NDCG@3 NDCG@10

1 UM 0.308 0.373 0.454

2 PLSA () 0.295 0.371 0.456

3 PLSA 0.325 0.391 0.470

4 BLTM () 0.330 0.399 0.476

5 BLTM 0.338 0.404 0.479

6 BLTM-PR () 0.334 0.403 0.479

7 BLTM-PR 0.342 0.406 0.482

8 BLTM-PR-1V () 0.337 0.403 0.480

9 BLTM-PR-1V 0.344 0.407 0.483

10 WTM_M1 () 0.332 0.400 0.478

11 WTM_M1 0.338 0.404 0.480

Table 1: Web document ranking results using different topic
models, tested on the evaluation data set, where only the title field
of each document is used.

Figure 2: Average number of function evaluations and gradient

computations per EM iteration, as a function of the number of the
EM iterations, in the projection step for training BLTM-PR.

0

10

20

30

40

50

60

0 5 10 15 20 25
number of EM iterations

of function
evaluation

of gradient
computations

model performs as well as BLTM, i.e., their results are not signif-
icantly different (Rows 10 and 11 vs. Rows 4 and 5). However,
both BLTM-PR and BLTM-PR-V1 beat the translation model
with a statistically significant margin (Rows 6 to 9 vs. Rows 10
and 11). We also tried combining WTM_M1 with BLTM-PR, but

the result is not significantly better than that of BLTM-PR.
The complexity of the training algorithm for BLTM is the

same as the EM training for PLSA, which has been well-studied.
BLTM-PR uses a modified EM algorithm. Although BLTM-PR
needs fewer EM iterations to converge, each iteration is more
expensive due to the projection step. The runtime of the projection
step is dominated by function evaluations (Eq. (28)), and other-
wise the most expensive step is the computation of the gradients

(Eq. (13)). Notice that the projection function needs to be called
for each query-title pair. Initializing BLTM-PR with a uniform
distribution for and , Figure 2 plots the average number of

function evaluations and gradient computations per EM iteration,
as a function of the number of the EM iterations. Both curves
show that after 10 EM iterations, the training becomes much
slower due to the dramatically increased cost of the projection
step, indicating that from this moment EM starts to lead the distri-
bution set far away from the ideal one in terms of KL distance.

The cost of projection reduces slightly after 16 iterations when the
EM training saturates. In our experiments, we found that training
BLTM takes around 30 hours on a commodity 8-core server with
64-GB memory, and training BLTM-PR takes twice as much time.
In practice, since the EM algorithm can be easily parallelized,
topic model training could be performed much more efficiently on
a cluster of computers.

5.3 Linear Projection Model Results

Table 2 shows the main Web document ranking results using var-
ious linear projection models, tested on the human-labeled evalua-
tion data set.

VSM (Row 1) is the baseline model, where both documents
and queries are represented as term vectors, with the TF-IDF term
weighting, and the documents are ranked by the cosine similarity

between the query and document vectors.
Rows 2 to 9 are four different linear projection models. All of

them have the same model form as that of LSA [9]. To improve
the efficiency of model training, we truncated the term vectors
based on a vocabulary consisting of only the top 40K high docu-
ment-frequency (DF) words, where the DF values are calculated
based on the clickthrough data. We used 100 dimensions (k=100)
for the vectors in semantic space. Similar to topic models, we

report a pair of results for each projection model using two differ-
ent settings. One is ranking documents using the cosine similarity
scores in the semantic space, as in Eq. (20). These results are
shown in the shaded rows in Table 2. The other is ranking docu-
ments based a weighted linear combination of two cosine similari-
ty scores, computed in the original term space and in the projected
semantic space, respectively. The linear combination weight is
tuned via cross-validation. In what follows, we describe each of

these models in turn.
LSA (Rows 2 and 3) is our implementation of the model de-

scribed in [9]. As described in Section 4.1, we used PCA instead
of SVD to compute the matrix. Queries and titles are treated as
separate documents; the pair information from the clickthrough
data was not used in this model.

CL-LSA (Rows 4 and 5) extends LSA by leveraging the pair
information so that the projected distance between a query and its
paired title is reduced [11]. In our implementation, each query and

its paired title were concatenated first to form a new document.
Then, the projection matrix was learned by applying LSA to this
new corpus.

OPCA (Rows 6 and 7) leverages the pair information in a
more principled way [12, 27] than CL-LSA does. Noticing that
solving the Eigen-decomposition problem in PCA is the same as

finding the vectors that maximize the Rayleigh quotient:

 (22)

OPCA improves PCA by replacing Eq. (22) with the generalized
Rayleigh quotient:

 (23)

where is the noise covariance matrix. The role of is to ensure

that the variance of the projected vectors of the query and title

from the same pair can be minimized. Let and be the doc-

ument-term matrices of queries and titles, respectively. In addition,

column vectors in and correspond respectively to the query

and title in the pair when they have the same column index. The
noise covariance matrix is constructed as

()

() (24)

where is the number of query-title pairs.
S2Net (Rows 8 and 9) is the learning framework introduced in

Section 4.2, where the projection matrix is discriminatively
learned using relevant and irrelevant pairs of queries and titles.
We first randomly split the clickthrough corpus into two subsets,
training (99.5%) and validation (0.5%). For each query, the paired
title is treated relevant (positive) and we randomly selected 4 oth-
er titles from the data as the irrelevant ones (negative). The pair-
wise training setting encourages the model to lead to higher simi-
larity scores of positive pairs compared to negative ones of the

same query. We stop the training process based on the model
performance on the validation set.

Several interesting conclusions can be drawn from the results
shown in Table 2. First, when comparing different linear projec-
tion models with the VSM baseline (Rows 2, 4, 6 and 9 vs. Row
1), we found that all models except S2Net perform worse than
VSM. This is consistent with the observation made by other re-
searchers, which is that using LSA alone can hurt the ranking

performance, especially for a very low dimensional concept vec-
tor space [24]. This result also justifies the scheme of combining
the projection models with VSM. As presented in Table 2, the
NDCG scores of the combined models are all better than both

Models NDCG@1 NDCG@3 NDCG@10

1 VSM 0.313 0.379 0.460

2 LSA 0.298 0.372 0.455

3 LSA + VSM 0.330 0.396 0.474

4 CL-LSA 0.298 0.370 0.454

5 CL-LSA + VSM 0.330 0.396 0.474

6 OPCA 0.306 0.373 0.454

7 OPCA + VSM 0.328 0.395 0.473

8 S2Net 0.329 0.401 0.479

9 S2Net + VSM 0.340 0.407 0.483

Table 2: Web document ranking results using different linear
projection models, tested on the evaluation data set, where only
the title field of each document is used.

VSM and the corresponding projection models. Second, unlike
the case of topic models, simply extending LSA to its bilingual
version CL-LSA does not lead to any significant improvement
(Rows 4 and 5 vs. Rows 2 and 3). Third, by simultaneously mini-
mizing the distance between projected vectors of queries and their

paired titles, OPCA does outperform LSA and CL-LSA with a
small but statistically significant margin (Row 6 vs. Rows 2 and
4). However, after combining with the term vector model, the
differences among these methods are not significant (Row 7 vs.
Rows 3 and 5). Finally, the S2Net-trained DPM, when either used
alone or combined with the term vector model, outperforms sig-
nificantly other competing models (Rows 8 and 9 vs. Rows 1 to 7).
Its superior results demonstrate that with an objective tightly re-

lated to the measure of evaluating document ranking, the discrim-
inative learning approach can be very effective.

S2Net clearly outperforms other linear projection methods, but
its training process is, unfortunately, more computationally ex-
pensive. Unlike LSA, CL-LSA and OPCA, which can all be
solved by Eigen-decomposition, there is no analytic solution that
minimizes the loss function in S2Net. In our current implementa-
tion, using a cluster of 60 ~ 80 nodes, each training iteration takes

1 to 1.5 hours and the model converges in approximately 40 itera-
tions. The training time scales roughly linearly in terms of the
number of dimensions and the number of examples. In contrast,
using a commodity 8-core server with 64-GB memory, it typically
takes 8 hours or less to derive an LSA, CL-LSA or OPCA model.

6. CONCLUSION

This paper presents two new document ranking models by com-
bining the methods of latent semantic representation and the sta-
tistical translation-based approach to IR. We explore various
methods of learning the semantic representation that is shared by a
query and its paired titles from clickthrough data. Our evaluation
on Web search shows that the proposed clickthrough-based latent
semantic models significantly outperform both the standard IR
models that do not use clickthrough data and those previous click-

through-based translation models that do not use semantic repre-
sentation.

In future work, we intend to explore alternative strategies of
combining latent semantic models and translation models for IR.
For example, we can form query-title corpora, where both the
queries and titles are labeled by topics or concepts (e.g., generated
using LSA). Then we can align the corpora using word-alignment
models and readily compute translation probabilities based on

words and topics. Another research area is the modeling of the
correlations between topics in document ranking, as suggested in
[3]. This is motivated by the observation that a search user may
click a document on a topic that is related to, but not the same as,
the topic in her query.

7. REFERENCE

[1] Asuncion, A., Welling, M, Smyth, P., and Teh, Y W. 2009. On

smoothing and inference for topic models. In Proceedings of

Uncertainty in Artificial Intelligence, pp. 27-34.

[2] Berger, A., and Lafferty, J. 1999. Information retrieval as statis-

tical translation. In SIGIR, pp. 222-229.

[3] Blei, D., and Lafferty, J. 2007. A correlated topic model of sci-

ence. The Annals of Applied Statistics, Vol. 1, No. 1, 17-35.

[4] Blei, D. M., Ng, A. Y., and Jordan, M. J. 2003. Latent Dirichlet

allocation. Journal of Machine Learning Research, 3: 993-1022.

[5] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer,

R. L. 1993. The mathematics of statistical machine translation:

parameter estimation. Computational Linguistics, 19(2): 263-311.

[6] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,

Hamilton, and Hullender, G. 2005. Learning to rank using gradi-

ent descent. In ICML, pp. 89-96.

[7] Chien, J-T., and Wu, M-S. 2008. Adaptive Bayesian latent se-

mantic analysis. IEEE Trans on Audio, Speech, and Language

Processing, 16(1): 198-207.

[8] de Freitas, N., and Barnard, K. 2001. Bayesian latent semantic

analysis of multimedia databases. Tech Report TR-2001-15,

University of British Columbia.

[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T., and

Harshman, R. 1990. Indexing by latent semantic analysis. Jour-

nal of the American Society for Information Science, 41(6): 391-

407

[10] Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likeli-

hood from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society, 39: 1-38.

[11] Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer, T.

K. 1997. Automatic cross-linguistic information retrieval using

latent semantic indexing. In AAAI-97 Spring Symposium Series:

Cross-Language Text and Speech Retrieval.

[12] Diamantaras, K. I., and Kung, S. Y. 1996. Principle Component

Neural Networks: Theory and Applications. Wiley-Interscience.

[13] Ganchev, K., Graca, J., Gillenwater, J., and Taskar, B. 2010.

Posterior regularization for structured latent variable models.

Journal of Machine Learning Research, 11 (2010): 2001-2049.

[14] Gao, J., He, X., and Nie, J-Y. 2010. Clickthrough-based transla-

tion models for web search: from word models to phrase models.

In CIKM, pp. 1139-1148.

[15] Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., Shah,

S., and Zhou, H. 2009. Model adaptation via model interpolation

and boosting for web search ranking. In EMNLP, 505-513.

[16] Gao, J., Yuan, W., Li, X., Deng, K., and Nie, J-Y. 2009.

Smoothing clickthrough data for web search ranking. In SIGIR.

[17] Girolami, M., and Kaban, A. 2003. On an equivalence between

PLSA and LDA. In SIGIR, pp. 433-434.

[18] Griffiths, T. L., Tenenbaum, J. B., and Steyvers, M. 2007. Top-

ics in semantic representation. Psychological Review, Vol. 114,

No. 2, 211-244.

[19] Hofmann, T. 1999. Probabilistic latent semantic indexing. In

SIGIR, pp. 50-57.

[20] Huang, J., Gao, J., Miao, J., Li, X., Wang, K., and Behr, F. 2010.

Exploring web scale language models for search query pro-

cessing. In Proc. WWW 2010, pp. 451-460.

[21] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods for

retrieving highly relevant documents. In SIGIR, pp. 41-48

[22] Jin, R., Hauptmann, A. G., and Zhai, C. 2002. Title language

model for information retrieval. In SIGIR, pp. 42-48.

[23] Koehn, P., Och, F., and Marcu, D. 2003. Statistical phrase-based

translation. In HLT/NAACL, pp. 127-133.

[24] Manning, C. D., and Schutze, H. 1999. Foundations of

Statistical Natural Language Processing. The MIT Press.

[25] Mimno, D., Wallach, H. J., Naradowsky, J., Smith, D. A., and

McCallum, A. 2009. Polylingual topic models. In EMNLP, pp.

880-889.

[26] Och, F. 2002. Statistical machine translation: from single-word

models to alignment templates. PhD thesis, RWTH Aachen.

[27] Platt, J., Toutanova, K., and Yih, W. 2010. Translingual

document representations from discriminative projections. In

EMNLP, pp. 251-261.

[28] Ponte, J., and Croft, W. B. 1998. A language model approach to

information retrieval. In SIGIR, pp. 275-281.

[29] Svore, K., and Burges, C. 2009. A machine learning approach

for improved BM25 retrieval. In CIKM.

[30] Vinokourov, A., Shawe-taylor, J., and Cristianini, N. 2003. In-

ferring a semantic representation of text via cross-language cor-

relation analysis. In NIPS, pp. 1473-1480.

[31] Wang, K., Li, X., and Gao, J. 2010. Multi-style language model

for web scale information retrieval. In SIGIR, pp. 467-474.

[32] Wei, X., and Croft, W. B. 2006. LDA-based document models

for ad-hoc retrieval. In SIGIR, pp. 178-185.

[33] Yih, W., Toutanova, K., Platt, J., and Meek, C. 2011. Learning

discriminative projections for text similarity measures. In

CoNLL.

[34] Zhai, C., and Lafferty, J. 2001. A study of smoothing methods

for language models applied to ad hoc information retrieval. In

SIGIR, pp. 334-342.

Appendix A: Derivation of the Projection Step

in BLTM-PR Training

We derive the forms of the projected posterior probabilities in Eq.

(10) and (11), and the gradient of Eq. (13). The derivation follows
closely the one presented in [13], and uses the standard Lagrangi-
an duality results.

The corresponding Lagrangian of the constrained optimization
problem in Eq. (9) is

 () (25)

 () (||)

 ∑ (

| |
∑ (|)

| |
∑ (|)

)

 ∑ (∑ (|)

)

 ∑ (∑ (|)

)

The Lagrangian includes the equality constraints to ensure that we
are in the desired constrained space and that we have valid distri-
butions. A non-negativity constraint on can also be added, but

this is not necessary as it falls out from the other conditions. The
form of (|) can be obtained by setting the derivative of

 () with respect to to zero as

 ()

 (|)

 (|) (|)

| |

Thus, we have

 (|)
 (|) (

| |
)

 ()

Since ∑ (|) , we get

 () ∑ (|) (

| |
)

We end up with the following form

 (|)

 (|) (

| |
) (26)

Similarly, we can derive the form of (|) as

 (|)

 (|) (

| |
) (27)

where

 ∑ (|) (

| |
)

Notice that Eq. (26) and (27) are identical to Eq. (10) and (11),
respectively. Now, we show how to estimate . Plugging Eq. (26)
and (27) into Eq. (25), we have

 () ∑ (|) (

| |
)

 ∑ (|)(

| |
)

 ∑ (

| |
∑ (|)

| |
∑ (|)

)

 ∑

 ∑

 (28)

We then use the gradient ascent algorithm to get the optimal

 () (29)

where is the learning rate, and the gradient is computed as

 ()
 ()

 *

| |
∑ ()

| |

+
 *

| |
∑ ()

| |

+ (30)

which is identical to Eq. (13)

Appendix B: Gradient Derivation in S2Net

We derive the gradient of the loss function in Eq. (21) as follows.

 ()
 ()

 ()

 (31)

 ()

 () (32)

 ()

 ̂ ̂

‖ ̂‖‖ ̂‖

() ()

‖ ‖‖ ‖
 (33)

Breaking it into three parts, we have

() () ̂ ̂ (34)

‖ ‖
 (̂ ̂)

 ̂ (35)

‖ ‖
 (̂ ̂)

 ̂ (36)

To simply the notation, let be ̂ ̂ ‖ ̂‖ and ‖ ̂‖
respectively. Eq. (33) becomes

 () ̂ ̂ (̂ ̂)

